partial function
A function which is not defined for all arguments of its input type. E.g.
 
 	f(x) = 1/x if x /= 0.
 The opposite of a total function. In denotational semantics, a partial 
							function
 	f : D -> C
 may be represented as a total function
 	ft : D' -> lift(C)
 where D' is a superset of D and
 	ft x = f x	if x in D
	ft x = bottom	otherwise
 where lift(C) = C U bottom. Bottom (LaTeX \perp) denotes "undefined".
(1995-02-03)
 
  
 
  
Nearby terms: 
							Partial Differential Equation LANguage « partial 
							equivalence relation « partial evaluation « 
							partial function » partial key » partially 
							ordered set » partial ordering
 
							
					  |