Home > Electronic Tutorials > Controlling Electrical Hazards - Health  and Safety > How Electricity Acts?

Controlling Electrical Hazards - Health & Safety

How Electricity Acts?

Electricity is essential to modern life, both at home and on the job. Some employees work with electricity directly, as is the case with engineers, electricians, electronic technicians, and power line workers. Others, such as office workers and sales-people, work with it indirectly. As a source of power, electricity is accepted without much thought to the hazards encountered. Perhaps because it has become such a familiar part of our surroundings, it often is not treated with the respect it deserves.

To handle electricity safely, it is necessary to understand how it acts, how it can be directed, what hazards it presents, and how these hazards can be controlled. Operating an electric switch may be considered analogous to turning on a water faucet. Behind the faucet or switch there must be a source of water or electricity, with something to transport it, and with pressure to make it flow. In the case of water, the source is a reservoir or pumping station; the transportation is through pipes; and the force to make it flow is pressure, provided by a pump. For electricity, the source is the power generating station; current travels through electric conductors in the form of wires; and pressure, measured in volts, is provided by a generator.

Resistance to the flow of electricity is measured in ohms and varies widely. It is determined by three factors: the nature of the substance itself, the length and cross-sectional area (size) of the substance, and the temperature of the substance.

Some substances, such as metals, offer very little resistance to the flow of electric current and are called conductors. Other substances, such as bakelite, porcelain, pottery, and dry wood, offer such a high resistance that they can be used to prevent the flow of electric current and are called insulators.

Dry wood has a high resistance, but when saturated with water its resistance drops to the point where it will readily conduct electricity. The same thing is true of human skin. When it is dry, skin has a fairly high resistance to electric current; but when it is moist, there is a radical drop in resistance. Pure water is a poor conductor, but small amounts of impurities, such as salt and acid (both of which are contained in perspiration), make it a ready conductor. When water is present either in the environment or on the skin, anyone working with electricity should exercise even more caution than they normally would.

Note: To report broken links or to submit your projects please send email to Webmaster